C.U.SHAH UNIVERSITY Winter Examination- 2022

Subject Name: Differential Equations

	Subject	Code: 5SC01DIE1	Branch: M.Sc. (Mathema	tics)
	Semeste	r: 1 Date: 03/01/2023	Time: 11:00 To 02:00	Marks: 70
	$ \begin{array}{c} \text{(1)} \\ \text{(2)} \\ \text{(3)} \\ \text{(4)} \\ \end{array} $	Dis: Use of Programmable calculator & a Instructions written on main answer Draw neat diagrams and figures (if n Assume suitable data if needed.	ny other electronic instrument is pr book are strictly to be obeyed. hecessary) at right places.	rohibited.
		S]	ECTION-I	
Q-1		Attempt the following questions		(07)
	a)	What is the degree of differential e	quation $y'' + (y' - x)^{\frac{1}{2}} = 0.$	(01)
	b)	Solve: $\frac{dy}{dx} = \frac{x-y}{x}$.		(01)
	c)	ax x Write down a form of Bessel's dif	fferential equation.	(01)
	d)	Find the particular integral of the d	ifferential $(D-1)(D-2)y = e^{3x}$	· . (01)
	e)	Write down Lagrange's auxiliary e (x - y)p + (y - z)q = (z - x).	equation form of the differential eq	uation (01)
	f)	Solve: $\frac{dy}{dx} = (x + y).$		(02)
Q-2		Attempt all questions		(14)
	a)	Find the power series solution of the	he differential equation $\frac{d^2y}{dx^2} + 3x\frac{d}{dx^2}$	$\frac{y}{x}3y = 0 \tag{06}$
	b)	about point $x = 0$. Discuss the singularities of the diff	ferential equation	(05)
	,	$x^2(x^2+1)\frac{d^2y}{dx^2}$	$\frac{y}{2} + (x^2 - 1)\frac{dy}{dx} + 2y = 0.$	· · · · · · · · · · · · · · · · · · ·
	c)	Find the solution of $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y$	$y = e^x$.	(03)
			OR	
Q-2	,	Attempt all questions	.2	(14)
	a)	Find the power series solution of the	he differential equation $\frac{d^2y}{dx^2} + y =$	0 about (05)
		point $x = 0$.		
	b)	Solve the differential equation y'' variation of parameters.	$+a^2y = \cos \cos ax$ by using the r	nethod of (05)
	c)	Solve: $\frac{dy}{dx} + (\tan \tan x + \frac{1}{x})y = \frac{s}{2}$	$\frac{x}{x}$.	(04)

Q-3 Attempt all questions

Q-3

Q-4

Q-5

Q-5

Q-6

Q-6

(14)

a)	Solve the differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = \frac{1}{x^2e^x}$ by using the method of variation parameters.	(07)
b)	If $y_1 = e^{2x}$ and $y_2 = xe^{2x}$ then find $W(y_1, y_2)$ at $x = 0$	(04)
c)	Solve $\frac{dy}{dx} = (x + y + 1).$	(03)
	OR	
	Attempt all questions	(14)
a)	Solve: $(mz - xy)p + (nx - lz)q = ly - mx$.	(06)
b)	If $X = ((yz + 2x), (zx - 2z), (xy - 2y)$ then show that $Xcrul(X) = 0$.	(05)
c)	Solve: $px + qy = z$	(03)
	SECTION-II	
	Attempt the following questions	(07)
a)	Solve: $\frac{d^2y}{dx^2} - y = 0.$	(01)
b)	Solve: $\frac{dy}{dx} = x^2y + y.$	(02)
c)	Write down the polynomial $(3x^2 - x - 1)$ in terms of Legendre's equation.	
d)	Verify that the equation $yzdx + xzdy + xydz = 0$ is integrable or not?	(02)
a) b)	Attempt all questions Solve: $(yz + xyz)dx + (zx + xyz)dy + (xy + xyz)dz = 0$. Find the approximate solution by Picard's method to the initial value problem $\frac{dy}{dx} = x + y$ $y(0) = 1$ to obtain a value of y for $x = 0.1$ correct up to three decimal places.	(14) (05) (05)
c)	Solve: $(y+z)dx + dy + dz = 0$.	(04)
	OR	
	Attempt all questions	(14)
a)	State and prove Rodrigue's formula.	(06)
b) c)	Prove that $(n + 1)P_{n+1}(x) = (2n + 1)xP_n(x) - nP_{n-1}(x)$, for all $n \ge 2$. State and prove Orthogonality of Bessel's function.	(04) (04)
	Attempt all questions	(14)
a)	In usual notation prove that $J_n(x) = \frac{1}{2} \int_0^{\pi} \cos \cos (n\theta - x\sin\theta) d\theta$ if $m = n$.	(05)
b)	Solve $z^2 = pqxy$ using Charpit's method.	(05)
c)	Prove that the $J_n(x)$ and $J_{-n}(x)$ are linearly independent.	(04)
	OR	
	Attempt all questions	(14)
a)	Find $\frac{c_6}{c}$ in power series solution of $y' = x^2 - 4x + 1$ with $y(2) = 3$.	(07)

b) State and prove the Orthogonality of Legendre's polynomials. (07)

